PMT

STATISTICS (C) UNIT 2 TEST PAPER 6

1.	An agricultural inspector wishes to select a random sample of farms in an area. To do so, he								
	randomly chooses a point on a map, and visits the farm whose land that point is in.								
	(i) State whether this method produces a random sample of farms.								
	(ii) Suggest a better method of	of selecti	ing the s	sample.					[2]
2.	The lengths of a certain type of fish are thought to be normally distributed. It is found that 12% of								
	those caught are longer than 3	37 cm an	d 9% aı	e shorte	er than 3	31 cm.			
	Find the mean and standard d	eviation	of the l	engths o	of these	fish.			[6]
3.	Bags of sugar are filled at a refinery. Their weights are normally distributed, with mean 504 grams and standard deviation 7 grams.								
	(i) Find the probability that a randomly-chosen bag has a weight below 495 grams.							[2]	
	A sample of 5 bags is taken a	nd their	average	weight	is foun	d to be	498·8 gr	ams.	
	(ii) Working at the 1% significance level, and assuming that the standard deviation is 7 grams,								7 grams,
	determine whether this ind	icates th	at the m	nachine	is meas	suring le	ss than	the correct	mean
	weight.								[5]
4.	It is thought that a random variable <i>X</i> has a Poisson distribution with mean 8.								
	(i) Find the critical region to test the hypothesis H0 : $\lambda = 8$ against the hypothesis H1 : λ							$\lambda < 8$,	
	working at the 5% significance level.								[2]
	(ii) Find the critical region if	f, instead	l, the alt	ternative	e hypotl	hesis is .	λ≠8.		[3]
	(iii) If, in fact, $\lambda = 5.5$, find the probability of making a Type II error in case (ii).							[3]	
5.	A secretarial agency carefully assesses the work of a new recruit, with the following results								
	No of errors	0	1	2	3	4	5	6	
		0	1	2		т	5	0	
	No of pages (i) Calculate unbiased estim	16 ates of t	38 he meai	41 1 and va	29 riance (14 of the m	10 umber o	2 f errors pei	r page [4]
	(ii) Explain how these results support the idea that the number of errors per page follows a								
	Poisson distribution							[1]	
	(iii) After two weeks at the agency the secretary types a fresh niece of work six pages for								s long
	which is found to contain 20 errors								
	The director suspects that the secretary was trying especially hard during the early period								
	and is now less conscient	ious Te	est this h	vpothe	sis at th	e 5% si	enifican	ce level	[6]
				-JP 5 110	sis at th	/ 0 518	Juniouli		[~]

6. A random variable *X* has a probability density function given by

$$f(x) = \frac{4x^2(3-x)}{27} \qquad 0 \le x \le 3,$$

f(x) = 0 otherwise.

- (i) Find the mode of *X*.
- (ii) Find the mean of X.
- (iii) Show that the median, *m*, of *X* satisfies the equation $m^4 4m^3 + 13.5 = 0$, and hence show that 1.84 < m < 1.85. [6]
- 7. A certain Sixth Former is late for school once a week, on average. In a half term of seven five-day weeks, lateness on more than ten occasions results in loss of privileges the following half term.
 - (i) Use an appropriate normal distribution to estimate the probability that he loses his privileges.

In a certain half term, he is only late on 4 days altogether.

(ii) Using a 5% significance level, carry out a hypothesis test to decide whether this supports his claim that his attendance has improved. [5]

STATISTICS 2 (C) TEST PAPER 6 : ANSWERS AND MARK SCHEME

1.	(i) No - farms with larger areas are more likely to be chosen	B2		
	(ii) Allocate each farm a number, then select numbers randomly	B2 4		
2.	Top 12% needs $z = 1.175$ and bottom 9% needs $z = -1.34$	B1 B1		
	Get $\mu + 1.175\sigma = 37$ and $\mu - 1.34\sigma = 31$,	B1 (both)		
	so $2.515\sigma = 6$, and $\sigma = 2.39$ cm; then $\mu = 34.2$ cm	M1 A1 A1	6	
3	(i) $P(X < 495) = P(Z < -\frac{9}{7}) = P(Z < -1.286) = 1 - 0.9008 = 0.0992$	M1 A1		
	(ii) With H ₀ : mean = 504, $\bar{\mathbf{x}}$ is distributed N(504, ⁴⁹ / ₅), so	B2		
	$P(X < 498 \cdot 8) = P(Z < (498 \cdot 8 - 504) / (7/\sqrt{5})) = P(Z < -1.661)$	M1 A1		
	$= 0.0484 Do not reject H_0 at 1\% level$	A1 7		
4.	(i) From tables, reject H_0 if $X = 0, 1, 2$ or 3	B2		
	(ii) Split 5% into two tails of 2.5% each :	M1		
	reject H ₀ if $X = 0, 1, 2$ or $X > 13$	A1 A1		
	(iii) If $\lambda = 5.5$, P(2 < X < 14) = 0.9983 - 0.0884 = 0.910	M1 A1 A1	8	

PMT

[3]

[3]

5.	(i) Mean = $325/150 = 2.167$	M1 A1
	variance = $1009/149 - (150/149) \times 2.1666^2 = 2.05$	M1 A1
	(ii) Mean ≈ Variance, which suggests Poisson	B1
	(iii) Assuming $H_0: \lambda = 2.1666$, no. of errors in 6 pages is Po(13)	B1 B1
	Then $P(X \ge 20) = 1 - 0.9573 = 0.0427 < 5\%$, so has got worse	M1 M1 A1 A111
6.	(i) $f'(x) = \frac{4}{27}(6x - 3x^2) = 0$ is T.P when $x = 2$, so mode = 2	M1 A1 A1
	(ii) Mean = $\frac{4}{27}\int 3x^3 - x^4 dx = \left[\frac{4}{27}\left(\frac{3x^4}{4} - \frac{x^5}{5}\right)\right]_0^3 = 1.8$	M1 A1 A1
	(iii) For median <i>m</i> , need $\frac{4}{27} \int 3x^3 - x^4 dx = 0.5$	M1
	so $m^3 - (m^4)/_4 = {}^{27}/_8$, i.e. $m^4 - 4m^3 + 13.5 = 0$	A1 A1
	Put $m = 1.84$, get $0.044 > 0$	M1 A1
	Put $m = 1.85$, get $-0.113 < 0$, so $1.84 < m < 1.85$	A1 12
7.	(i) No of lates in 7 weeks is distributed B(35, 0.2) ~ N(7, 5.6)	M1 A1
	$P(X > 10) = P(X > 10.5) = P(Z > 3.5/\sqrt{5.6}) = P(Z > 1.479)$	M1 A1 A1
	= 1 - 0.9305 = 0.0695	M1 A1
	(ii) H0 : $p = 0.2$; then P($X \le 4$) = P ($X < 4.5$) = P ($Z < -2.5/\sqrt{5.6}$)	B1 M1 A1
	= P(Z < -1.056) = 0.146 > 5%	A1
	Therefore, no significant evidence of a change from $p = 0.2$	A1 12