STATISTICS (C) UNIT 2 TEST PAPER 6

1. An agricultural inspector wishes to select a random sample of farms in an area. To do so, he randomly chooses a point on a map, and visits the farm whose land that point is in.
(i) State whether this method produces a random sample of farms.
(ii) Suggest a better method of selecting the sample.
2. The lengths of a certain type of fish are thought to be normally distributed. It is found that 12% of those caught are longer than 37 cm and 9% are shorter than 31 cm .
Find the mean and standard deviation of the lengths of these fish.
3. Bags of sugar are filled at a refinery. Their weights are normally distributed, with mean 504 grams and standard deviation 7 grams.
(i) Find the probability that a randomly-chosen bag has a weight below 495 grams.

A sample of 5 bags is taken and their average weight is found to be 498.8 grams.
(ii) Working at the 1% significance level, and assuming that the standard deviation is 7 grams, determine whether this indicates that the machine is measuring less than the correct mean weight.
4. It is thought that a random variable X has a Poisson distribution with mean 8 .
(i) Find the critical region to test the hypothesis $\mathrm{H} 0: \lambda=8$ against the hypothesis $\mathrm{H} 1: \lambda<8$, working at the 5% significance level.
(ii) Find the critical region if, instead, the alternative hypothesis is $\lambda \neq 8$.
(iii) If, in fact, $\lambda=5 \cdot 5$, find the probability of making a Type II error in case (ii).
5. A secretarial agency carefully assesses the work of a new recruit, with the following results after 150 pages:

No of errors	0	1	2	3	4	5	6
No of pages	16	38	41	29	14	10	2

(i) Calculate unbiased estimates of the mean and variance of the number of errors per page.[4]
(ii) Explain how these results support the idea that the number of errors per page follows a Poisson distribution.
(iii) After two weeks at the agency, the secretary types a fresh piece of work, six pages long, which is found to contain 20 errors.

The director suspects that the secretary was trying especially hard during the early period and is now less conscientious. Test this hypothesis at the 5\% significance level.
6. A random variable X has a probability density function given by

$$
\begin{array}{ll}
\mathrm{f}(x)=\frac{4 \mathrm{x}^{2}(3-\mathrm{x})}{27} & 0 \leq x \leq 3 \\
\mathrm{f}(x)=0 & \text { otherwise }
\end{array}
$$

(i) Find the mode of X.
(ii) Find the mean of X.
(iii) Show that the median, m, of X satisfies the equation $m^{4}-4 m^{3}+13 \cdot 5=0$, and hence show that $1.84<m<1.85$.
7. A certain Sixth Former is late for school once a week, on average. In a half term of seven five-day weeks, lateness on more than ten occasions results in loss of privileges the following half term.
(i) Use an appropriate normal distribution to estimate the probability that he loses his privileges.
In a certain half term, he is only late on 4 days altogether.
(ii) Using a 5% significance level, carry out a hypothesis test to decide whether this supports his claim that his attendance has improved.

STATISTICS 2 (C) TEST PAPER 6 : ANSWERS AND MARK SCHEME

1. (i) No - farms with larger areas are more likely to be chosen
(ii) Allocate each farm a number, then select numbers randomly

B2 4
2. Top 12% needs $z=1.175$ and bottom 9% needs $z=-1.34$

B1 B1
Get $\mu+1 \cdot 175 \sigma=37$ and $\mu-1 \cdot 34 \sigma=31$,
B1 (both)
so $2.515 \sigma=6$, and $\sigma=2.39 \mathrm{~cm}$; then $\mu=34.2 \mathrm{~cm}$
M1 A1 A1 6

3
(i) $\mathrm{P}(X<495)=\mathrm{P}\left(Z<-{ }^{9} / 7\right)=\mathrm{P}(Z<-1 \cdot 286)=1-0.9008=0.0992$
M1 A1
(ii) With $\mathrm{H}_{0}:$ mean $=504, \overline{\mathrm{X}}$ is distributed $\mathrm{N}\left(504,{ }^{49} / 5\right)$, so B2

$$
\mathrm{P}(X<498 \cdot 8)=\mathrm{P}(Z<(498.8-504) /(7 / \sqrt{ } 5))=\mathrm{P}(Z<-1.661)
$$

M1 A1

$$
=0.0484 \quad \text { Do not reject } \mathrm{H}_{0} \text { at } 1 \% \text { level }
$$

A1 7
4. (i) From tables, reject H_{0} if $X=0,1,2$ or 3
(ii) Split 5% into two tails of $2 \cdot 5 \%$ each :
reject H_{0} if $X=0,1,2$ or $X>13$
(iii) If $\lambda=5.5, \mathrm{P}(2<X<14)=0.9983-0.0884=0.910$
5. (i) Mean $=325 / 150=2 \cdot 167$

M1 A1
variance $=1009 / 149-(150 / 149) \times 2 \cdot 1666^{2}=2 \cdot 05$
(ii) Mean \approx Variance, which suggests Poisson
(iii) Assuming $\mathrm{H}_{0}: \lambda=2 \cdot 1666$, no. of errors in 6 pages is $\mathrm{Po}(13)$

Then $\mathrm{P}(X \geq 20)=1-0.9573=0.0427<5 \%$, so has got worse
6. (i) $\mathrm{f}^{\prime}(x)=\frac{4}{27}\left(6 x-3 x^{2}\right)=0$ ie T.P when $x=2$, so mode $=2$
(ii) Mean $=4 / 27 \int 3 x^{3}-x^{4} \mathrm{~d} x=\left[\frac{4}{27}\left(\frac{3 \mathrm{x}^{4}}{4}-\frac{\mathrm{x}^{5}}{5}\right)\right]_{0}^{3}=1 \cdot 8$
(iii) For median m, need $\quad 4 / 27 \int 3 x^{3}-x^{4} \mathrm{~d} x=0.5$
so $m^{3}-\left(m^{4}\right) / 4={ }^{27} / 8$, i.e. $m^{4}-4 m^{3}+13 \cdot 5=0$
Put $m=1.84$, get $0.044>0$
Put $m=1 \cdot 85$, get $-0.113<0$, so $1.84<m<1.85$
7. (i) No of lates in 7 weeks is distributed $\mathrm{B}(35,0 \cdot 2) \sim \mathrm{N}(7,5 \cdot 6)$
$\mathrm{P}(X>10)=\mathrm{P}(X>10 \cdot 5)=\mathrm{P}(Z>3 \cdot 5 / \sqrt{ } 5 \cdot 6)=\mathrm{P}(Z>1 \cdot 479)$ $=1-0.9305=0.0695$
(ii) $\mathrm{H} 0: p=0 \cdot 2$; then $\mathrm{P}(X \leq 4)=\mathrm{P}(X<4 \cdot 5)=\mathrm{P}(Z<-2 \cdot 5 / \sqrt{ } 5 \cdot 6)$ $=\mathrm{P}(Z<-1 \cdot 056)=0 \cdot 146>5 \%$
Therefore, no significant evidence of a change from $p=0 \cdot 2$

M1
M1 A1 A1
M1 A1 A1

A1 A1
M1 A1
A1 12

M1 A1
M1 A1 A1
M1 A1
B1 M1 A1
A1
A1 12

M1 A1
B1
B1 B1
M1 M1 A1 A111

